ИССЛЕДОВАНИЕ ВЛИЯНИЯ САЛИЦИЛОВОЙ КИСЛОТЫ НА СИНТЕЗ ИНДОЛЬНЫХ АЛКАЛОИДОВ ТРАНСГЕННОЙ КОРНЕВОЙ КУЛЬТУРОЙ РАУВОЛЬФИИ ЗМЕИНОЙ (RAUWOLFIA SERPENTINA B ENTH.)

Abstract

Tрансгениая кориевая культура раупальрии знеиной Raиwolfia serpentina Benth. Ginera калоидов в куантуральной среде после отрабопти салицилопой кислотой эөеличиносл прибли- среде коитраныой куаьтуро.

Введеиие. Одной из фундаментиььных задач биотехнологии на сегодняшний день является поиск в используемой биогехнологической системе возможностей коитроля и управлсния синтезом веществ, представляюших интерес для человека. Это утверждение полностью справедливо для культур клеток и тканей растсний-продуиентов, которые часто используются как источники биологически актнвных вешеств, обычно представляющих продукты вторичного синтеза растнтельной клетки.

Помимо использусмых рансе подходов, направленных на получение высокопродуктивных клеточных линий и оснонываюинихся на селекиии клонӧ́ с высоким уровнем вторичного мстаболизма, воздействии на культуру стрессовых факторов нли изменении условий культивирования [1-6], несомненный интерес нызывает исследопание действия на расти, тельную клетку соединений. участвуюиих в растении в передаче гормонального сигнала и изменяюыих (прямо или опосредованно) генетическую регуляиию синтеза разлияных классов вешеств, в том чнсле и вторичных метаболитов $|7-11|$. Одним из таких вешеств является салициловая кислота $[8,11]$. Эндогенная салиииловая кислота участвует в регуляции развития растений, увсличнвает иродолжітельность иветения и ингибирует бносинтез этнлена. Известно также, что салиииловая кислота участвуст в регуляиии термогенеза растеннії [11].

Важную роль салициловая кислота играет также н реакıиях устойчивости растений к патогенам, в частности, в реакции системной индуцированной устойчивости, связанной с измснением экспрессии ряда генов и синтезом специфических белков. Похожий эффект можно наблюлать и при экзогенном примененни салиииловой кислоты $[8,11]$. $У_{\text {читывая, что одной из реакиий растения на стресс часто является уве- }}^{\text {ив }}$ личснис уровия вторичного метаболизма |10, 12-15], можно предположить, что обработка культуры клсток растений салициловой кислотой оказывает подобное воздействие.

Одним нз представителей семсйства Apocenaceae, насчитываюuего около 2000 видов, является раувольфия зменная (Rauwolfia serpentina Benth.). Миогис виды, относянииеся к этому семейству, характеризуются высоким уровнем синтеза фармаиевтически ченных вешеств. Rauwolfia serpentina Benth . - продуцент индольных алкалондов, иснользуемых в терапии кардиологических и сосулистых заболеваний и представляюиих опрелеленный интерес в качестве продуктов биотехнологического производства.

Исследования Воллосовнча |||. Кунаха и Аихимовой $|4,16|$ и ар. иролекӧонстрировали перспективность культуральных и селекиионных

работ в направлении получения высокопродуктнвных штаммов ку ры клетох этого растения. Однако исследования, проводившиеся с халлусными линиями раувольфии змеиной, не включали в себя изучения воздействия вешеств выполняюших в растительных клетках роль посрелников при передаче гормонального сигнала, на уровень вторичнопо метаболизиа в культуре. К тому же характер вторичного метаболизма
 в культуре дифферениированных клеток, такой как трансниа кованной
 клеточной культуры. Отличаться также может ответная реахиия культуры на различные стрессовые факторы.

Тахим образом, исследование воздействия экзогенной салициловой хислоты на трансгенную корневую культуру раувольфии змеиной продуиента ряда фармакологически активных индольных алкалоидов представляет интерес как с точки зрения возможности регулирования уровня синтеза вторичных метаболитов, так и с точки зрения изучения механизмов этого проиесta

Материалы и методы. Биологический материал. В экспериментах использовали трансгенную корневую культуру Rauwolfia serpentina, полученнуо нами ранее [17], которую культивировали на жидкой питательной среде MS [18] без гормонов (соотношение масса корней (r) /объем среды (мл) составляло приблизительно $1 / 10$) при температуре $25^{\circ} \mathrm{C}$ в темноте на шейкере возвратно-поступательного действия с частотой колебаний 100 в | мин. Длительность пассажа составляла 14 сут. Стоховый ластор салиииловой кислоты (Sigma) в этиловом спирте (кониентрация 10 М) бия добавлен в культуральную среду перед началом культивиро10 м)
 ставнла 1 и 2 мМ. В связи с тем, чо спирта не превышал $0,02 \%$ объема ко культуры этиловый спирт добавлен не был. Обрзиии сялициловой кис1, 2, 4 и 7-е сутки пассажа. Для каждой концентрации салициловой кислоты опыт проводился в шести повторностях. В трех повторностях ткань отбкрали на 0 , 1. 2-е сутки культивирования после добавления салициловой хислоты, а в трехе- на 0.4 и 7-е сутки культивирования, кроме тех случаев, когда это было технически невозможно. Отобранную ткань заморяхивали и хранили до высушивания при температуре $-20^{\circ} \mathrm{C}$. замь восиинияи лиофильно. После окончания эксперимента культуТкань высушивали лиофильно. После окончания эксперимента $-20^{\circ} \mathrm{C}$.
ральную среду замораживали экстракты алкалоидов получали методом
Эхстракиия. Суммарные экстракты алкалоидов получали методо
Парра и соавт. [19] в нашей модификаиии \{20| (протокольь №
Протокол № 1. Измельченную лиофильно высушенную тканқ экстрагировали $0,5 \%$-ным водным раствором ортофосфорной кислоты ($\mathbf{p H} 2,0$) (10 мл на 100 mr сухого веса) на шейкере в течение 5 ч (200 KO лебаний в I мин). Экстракт фильтровали, биомассу повторно экстрагировали 0,3 объемами 0.5%-ной фосфорной кислоты. Контролировали значение pH и в случае 'необходимости доводили до 2,0 , после чего добамляли толуол (0.5 объема водного экстракта). Пробу интенсивно бамряхивали l-2 мин и после отстаивания отбирали водную фазу с повстряхнвали мошью
 соединяли с первой пориией. Доводлй ным водным раствором аммнака) и трижаы экстагта ббздиняли и осулоиды толуолом. Все пориии органического экстракта обьединял и осу шали безводным сульфатом натрия. Затем толуольныи экстракл упаривали на роторном испарителе при температуре $40^{\circ} \mathrm{C}$ до объема 2 кіл и переноскли во флакон. Упаривали на воздухе по образовакия густото осадка, затем досушивали лиофильно.

Протокол № 2. Культуральн…п срелу фильтронали 85%-но фосфорной кислотой. рН срены дс иии до 2,0 и экстрагировал 0,5 объемами толуола. Отбирали водную (азу) и трижлы экстрагировал до 8,0 (25%-ным волным $(0,5$ объема водной фазы). Bсе пориии орга нического экстракта оӧъединяли и осушали безводным сульффатом на рия. Затем толуольный экстракт упаривали на роторном испарител три температуре $40^{\circ} \mathrm{C}$ до объема 20 мл и переносили во флакон. Упари валіи на воздухе до образования густого осадка, затем досушивали лис фильно.

Количественное исследование сукммарных экстрактов алкалоидов. Or ределение кониентрации раствора индольных алкалондов в толуоле прс ределили на спектрофотометре *Gilford* при ллине волны 285 нм. Сиек одиотометр калибровали по стандартному раствору суммларного экстраь
 оолученному согласно протоколу № 1. Калибровочная кривая зависимя сти оптической плотности от концентрации суммарного экстракта алк: оидов представлена на рис. І. При построении графика был использ ван ПК TIKO PSX 325 с программой GRAPHER Copyright (C) 19: Golden Software, Inc.

Поитор nocta		Kониентрания ankanoıuos						
		п тханм. r/100\% c.s.						
		перчод кумьпивирования. сут						
		0	1	?	4	7	?	7
RSI	0	3,448	-	3.010	-	-	0.618	
RS2	0	0.680	0.188	0.194	-	-	0.856	
RS3	0	3.673	2.170	1.916	-	-	0.274	-
Cp	0	2.600	1.179	1.703	0717	26	-	1.009
RS4	0	0.640	-	-	0.717	0.263	-	$1.009{ }^{\circ}$
: RSS	0	0.849	-	-	1.083	0.413	-	${ }_{0}^{0.617}$
RS6	0	0.815	-	-	0.449	0.413 0.338	$\square_{0.583}$	${ }^{0.617} 0.81{ }^{\text {a }}$
Cp	0	0.768	- 78	- 7	0.750	0.338	0.583 .	0.813°
RSI	1	3.837	1.789	0.647	-	-	$\underline{2.549}$	-
RS3	1	1.814	0.474	0.628	-	-	3.519	-
RS7 ${ }^{\circ}$	1	1.479	1.433	0.643 0.639	-	-	$\stackrel{-}{-}$	0.342^{*}
Cp	1	2.376 0.579	1.232	0.639	$0 . \overline{451}$	-	-	0,342
RS4 RS6	1	0.579 0.912	-	-	0.457	-	-	0.415
RS8	1	1.380	-	-	0,557	0.414	-	0.596
Cp	1	0.957	-	- 7	0.488	0.414	2.381	0.379**
RSI	2	1.929	2.050	1.366	-	-	1.876 3 3	-
RS6	2	2.075	1.047	0.779	-	-	$\begin{array}{r}1.8767 \\ \hline .952\end{array}$	
RS8		2,794	1.188	0.565	-	-	2.952	
Cp		2.266	1.428	0.903		0.167	-	0.691
RS4	2	0.333	-	-	0.435 0.300	0.372	-	4.074
RSS	2	0,549	-	-	0.300 0.667	0,372 0,484		7.347
RS7	2	2,539 1.479			0,667 0.467	0,341	2.865	4,037
Cp	2	1.479	-	-	0.467	0.34	2,86	

Примечания. Прочерк означ:ст. что данныс о кониснтраиии апкалондон оте: стауют. Солержанне алкалоидов в срене анализировалось на 4-е сутки культивирован

 RS4 и RS6 (1 mM).

ISSN 0564-3783. Циталогия и генетика. 1998. Т. 32. Ко. 3

Рис. 1. Графих завнсимости величнны оптичесхой плотности (по вертихали) от кониентрашии сумарного экстракта алкалонпов ткани трансгенной корневой культуры рауэольфии змеинои (по горизонтали), мг/мл. Измерения проводили при длине волны 285 нм Рис. 2. Относительное содержание индольных алхалоидов, прои. от исходного уровня (по вертихали) в тани трансгенной корневой хультуры Rauwolfia serpentina Benth., по горизонтали - пернод культивирования, сут; 1 - контроль; $2-1$ мМ салициловой кислот; 3-2 мМ салиииловой кислоты

Результяты исследований и их обсуждение. Метаболизм растительных клеток способен резко изменяться при действии на них патогена или патогенного тохсина - возможно включение de novo различных метаболических путей, в том числе и вторичного синтеза [10, 12-15]. Показано, что одной из реакций растения на действие стрессового фактора является увеличение концентрации внутриклеточной жасмоновой кислоты [7,10], поэтому предположили, что жасмонаты являются соединениями, связанными со стрессовыми реакииями растительных клеток. Жасмоновая кислота, в частности, является сигнальной молекулой, которая синтезируется в растениях в ответ на различные стрессы и влияет на экспрессию генов на многих уровнях [7]. Было также установлено, что аккумуляция эндогенной жасмоновой кислоты и ее производного метилжасмоната - сопровождается индукцией биосинтеза ряда соединений вторичного метаболизма в культуре клеток растений, в частности, Eschscholtzia californica [21]. K аналогичному результату приводит обработка культуры клеток экзогенными жасмонатами [10].

Недавно было показано, что салиииловая кислота также выступает в качестве эндогенной сигналвной молекулы, необходимой для индукции в растении так называемой реакции системной индуцируемой устойчивости к ряду патогенов, сопровождающейся синтезом специфических белков [8,22]. Поэтому было логичным предположить, что обработка культуры клетох экзогенной салициловой кислотой также будет влиять и на характер вторичного синтеза в растении.

Трансгенная корневая культура Rauwolfia serpentina Benth. была обработана салициловой кислотой в концентрации 1 и 2 мМ. Ткань для анализа отбиралась на $0,1,2,4$ и 7 -е сутки пассажа после добавления салициловой кислоты. Экстракция суммы индольных алкалоидов из ткани проводилась по протоколу № 1. Также исследовалось суммарное содержание индольных алкалоидов в культуральной среде. В этом случае экстракция проводилась в соответствии с протоколом № 2.

При изучении содержания алкалоидов в ткани культуры на $0,1,2,4$ и 7-е сутки после добавления салициловой кислоты достоверных $(P=0,95)$ различий между суммарными концентраииями индольных ал-

Рис. 3. Графих изменсния содержания суммы индольных алкалоидов в ткани трансгенной корневой культуры раувольфии змеиной в ходе культивирования: по всртикали -- концентрация алкалондов, г/100 г с. в.; по горизонтали - период культивирования, сут

калоидов в ткани опытных и контрольных культур обнаружено не было (таблица) [23]. Но как в опытных, так и в контрольных культурах наблюдалось уменьшение концентрации алкалоидов в ткани в ходе культивирования (таблица, рис. 2). Сравнение средних значений концентраций алкалоидов в ткани в различные периоды культивирования как в контрольных, так и в обработанных салициловой кислотой культурах выявило достоверное ($\mathrm{P}=0,95$) различие при анализе трех соответствующих повторностей контрольных или опытных вариантов только в одном * случае: на 2-е сутки культивирования после добавления салишиловой кислоты (2 mM) концентраиия индольных алкалоидов в ткани культуры уменьшилась с $2,266 \pm 0,524$ до $0,903 \pm 0,469$ г/100 г с. в. Наблюдаемый низкий уровень достоверности при статистическом анализе данных можно объяснить малой величиной исследуемой выборки.

Сравнивая средние значения содержания индольных алкалоидов в ткани всех исследуемых вариантов (обработанных салициловой кислотой в концентрации $1 \mathrm{mM}, 2 \mathrm{mM}$ и контрольных повторностей) в различные периоды культивирования, мы получили достоверное ($P=0,95$) различие между концентрацией внутриклеточных алкалоидов в *нулевой* точке и их концентраиией в ткани на 4 -й и 7 -й день культивирования (рис 3). Содержание алкалонлов уменьшилось с $1,684 \pm 0,531 \mathrm{mr} / 100$ г с. в. в начале культивирования («нулевая точка*) до $0,568 \pm 0,151$ и $0,352 \pm 0,093$ мг $/ 100$ г с. в. соответственно на 4 -е и 7-е сутки после добавления салициловой кислоты.

Уменьшение кониентрации индольных алкалоидов в ткани трансгенной корневой культуры раувольфии змеиной в ходе культивирования может свидетельствовать об усилении экскреиии этих метаболитов в культуральную среду, что подтверждают приведенные ниже данные.

Обработка салициловой кислотой в концентрации 2 mM привела к изменению количественного содержания алкалокдов в культуральной среде (таблица). Концентрация алкалоидов в среде в опытной линии составила на 2-е сутки после добавления салициловой кислоты $2,865 \pm 1,073 \mathrm{mr} /(100 \mathrm{mл} \cdot 100 \mathrm{mг}$ с. в.), что достоверно ($\mathrm{P}=0,95$) превышает соответствующее значение для контроля ($0,583 \pm 0,331$) в 4,91 раза (рис. 4).

На 7-е сутки после обработки культуры салициловой кислотой (2 mM) концентрация алкалоидов в среде увеличилась по сравнению с контролем в 4,97 раза (с $0,813 \pm 0,384$ до $4,037 \pm 3,766 \mathrm{mr} / 100 \mathrm{mr} \cdot 100 \mathrm{mr} \mathrm{с}. \mathrm{в)} \mathrm{(рис}. \mathrm{5)}$.

Рис. 4. Содерхание суммы индольных алхалоидов в культуральной среде трансгенной хорневой хультуры раувольфии змеиной на 2-е сутки культивирования: по вертикали конпентрация алсалондов в культуральной срепе. мг/100 мг с. в. 100 мл; по горизонтали -1 хонтраль; $2-2$ мМ салициловоі̆ кислоты
Рис.5. Соперхание суммы индольных алкалоидов в культуральной среле трансгенной корневой хультуры раувольфии змеиной на 7 -е сутки культивирования: по вертикали концентраиия алсалоилов в культуральной среле, мг/ $100 \mathrm{mг} \mathrm{с}. \mathrm{в}$.100 мл; по горизонтали - 1-контраль; 2-2 мМ салиииловой кислоты

Рис. 6. Сопержание суммы индольных алхало идов в культуральной среле трансгенной корневой культуры раувольфии змеинои на 2-е суткИ культивирования: по вертикали - хонмг/100 мr с. в. 100 мл; по горизонтали - 1контраль; 2 - 1 мМ салишиловоА кислоты

лая величина исследуемой выборки не позволила получить достоверное раличие между этими величинами

Обработка трансгенной корневой культуры раувольфии змеиной са-
 центрации алкалоидов, выделившихся в культуральную среду на 2-е сутки после добавления салициловой кислоты, в 4,08 раза по сравнению с контролем (рис.6). Эти величины составляют соответственно $2,381 \pm 1,392$ и $0,583 \pm 0,331 \mathrm{mr} / 100$ мл $\cdot 100 \mathrm{mr}$ с. в

Таким образом можно сделать вывод, что обработка салициловой кислотой трансгенной корневой культуры раувольфии змеиной в концентрации 1 и 2 мМ ведет к увеличению приблизительно в 4 раза конмитаиии алкалоилов вылеляемых в культуральную среду. К сожалению, незначительный объем выборки не позволяет достоверно оценить нию, назния в уровне экскретируемых в культуральную среду алкалоидов различия в уровне экскретируемых в культуральную среду алалоидов при обработке культуры салиииловой кислотой в концентрации 2 мМ. Концентрация индольных алкалоидов в ткани трансгенной кор2 мМ. Концентрация индольных алкалоидов в ткани трансгенной корго периода культивирования как в контрольных, так и в опытных вари антах. Достоверного ($\mathrm{P}=0,95$) различия между содержанием индольных алкалоидов в ткани культур, обработанных салициловой кислотой в Кон центрации 1,2 мМ, и контрольными вариантами в различные периоды культивирования найдено не было

Анализируя полученные результаты, можно отметить, что салицило ая кислота участвует в растении не только в регуляиии экспрессии ряда генов, определяюших реакıию системной индушируемой устойчивости, но и способна изменять характер вторичного метаболизма в расти-

тельных клетках, что может указываті общность регуляторных меха низмов этих проиессов.

Способность экскретировать алкалоиды в культуральную среду явля ется важной биотехнологической характеристикой культуры с точки зре ния возможности культивирования ткани в биореакторах с целью полу чения коммерчески значимых количеств интересующих человека про дукто вторичного синтеза [24]. Выделение вторичных метаболитов улия кул вророиесс культивирования ткани при стандартных усло сировано как в процессе культивирования ткани при стандартных усло виях [25], так и после обработки элиситорами [15], однако эгот проиес не всегда характерен для трансгенных корневых культур. Для каллусны: культур раувольфии змеиной не было отмечено высокого уровня экскре ции алкалоидов в культуральную среду [26], поэтому выделение индоль ных алкалоидов в питательную среду трансгенной корневой культуро раувольфии змеиной при стандартных условиях культивирования и уси ление этого процесса в несколько раз при обработке культуры салици ловой кислотой является иенным свойством культуры, в перспектив позволяюшим воздействовать на уровень вторичного синтеза в условия: промышленного культивирования.

SUMMARY. Rauwolfia serpentina hairy root culture has been treated with 1 mM an 2 mM salicylic acid (SA). The total indole alkaloid content in hairy root tissue and in cultura . medium for different cultivation periods after treatment was invesigaied. No the concentration ences were derected either in contr cultural medium after SA treatment was about 4 -fold increase: the indole alkalolds released to the cultural medium aner SA trealment was about,
if compared with control.

PEЗЮМE. Трансгенну кореневу культуру раувольфй змї̈ної Raunolfa serpentin Benth. було оброблено саліциловоюо хислотоло в хониентраиії 1 та 2 мм . Дослілкувал вміст суии індальних алкапіців в тканині трансгенної кореневоі культури, а також в куль лослілі, в той час як вміст алкалоїдів у культурельному середовнщі після обробки саліи ловоо кислотою збільшився приблизно в чотири рази у порівнянні 3 вмістом індольних а калоілів у культуральному серсдовиші контрольноі культури.

СПИСОК ЛИТЕРАТУРЫ

1. Валлосоии Н. Е., Волапсояии А. Г., Ковалева Т. А. и др. Штаммы культуры ткан Rauwolfia serpentina Benth. и их продуктивность // Растит. ресурсы. - 1976. 4. - C. 578-583
2. Ковалева Т. А., Шамииа З. Б., Буэпеико Р. Г. Действие азотистого иприта на культу иэолированных тканей раувольфии // Генетика. - 1972. - 8, № 2. - С. 46-54
. Yamamoto O., Yamada Y. Production of reserpine and its optimization in cultured Rauwolfi serpentina Benth. cells // Plant Cell Rep. - 1986. - 5. - P. 50-53
3. Kunakh V. A., Alkhimova E. G. Rauwolfia serpentina: in vitro culture and the production c ajmaline // Biotech. in Agricult. Forest. Medicin. A
Smith J. Smart N. J. Kurz W. G. W. et al. The use of organic and inorganic compounds t increase the accumulation of indole alkaloids in Catharanthus roseus (L.) G. Don cell sus pension cultures // J. Exp. Bot. - 1987. - 38. - P. 1501-1506.
4. Sinith J. I., Quesnel A. A., Smart N. J. el al. The development of a single-stage growth an indole alkaloid production medium for Catharanthus roseus (L.) G. Don suspension culture/ Enzyme Microb. Technol. - 1987. - 9. - P. 466-469.
5. Reinbothe S., Mollenhaucr B., Reinbothe Ch. JIPs and RIPs: The Regulation of plant Gen Expression by Jasmonates in Response to Enviromentl Cues and pathogens // The Plar Cell. - 1994. - 6. - P. 1197-1209.
B Gafney T. Friedrich L. Vernooij B. et al. Requirement of salicilic acid for the induction systemic Acquired Resistance // Science. - 1993. - 261. - P. 754-756. ,
6. Hildmann T., Ebneth M.. Pena-Cortss H. et al. General role of abcisic asmonic acids in gene activation as a result of mechanical wounding // Plant Cell. 1992. - 4. P. 1157-1170.
7. Gundloch B., Muller M. J.. Kutchan T. M. et al. Jasmonic acid is a signal transducer in elici-tor-induced Plant cell cultures // Proc. Nat Acad. Sci. USA - 1992. - 89. - P. 2389-2393.
8. Raskin I. Role of salicylic acid in plants // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992. - 43. - P. 439-463.
9. Siers \mathcal{M}. W., Flores \boldsymbol{H}. E. The biosynthetic potential of plant roots // BioEssays. - 1990. 12, Ne 1. - P. 7-13.
10. Dunlop D., Curnis W. Sinergistic respons of plant hairy root cultures to phosphate limitation and fungal elicitation // Biotechnol. Prog. - 1991. - 7, No 5. - P. 434-438.
11. Nalpathak N. P., David S. B. Stimulation of solasoidine production by combining fungal elisitors and Immobilised cell suspension cultures of Solanum surattense Burm // Biotechnol. Lett. - 1992. - 14. Ne 10. - P. 965-968.
12. Sivs M. W., Flores H. E. Elicitation of sesquiterpene phytoalexin biosynthesis in transformed root cultures of Hyoscyamus muticus L. // Plant. Physiol. - 1989. - 89, Ne 4 (S). - P. 135.
13. дехимоеа Е. Г. Генетическое и физиалого-биохимическое изучение высокопродуктивных штмммов культивируемых кาеток Rauwolfia serpentina Benth. : Дис: ... канд. биол. наукх - Kıев. 1989. - 128 с.
14. Шедудико ГО. В., Костенюк И. А. Динамика роста и содсржанис суммы алкалоидов в трансгенной корневой ку.ььтурс раувольфии змеиной (Rauwoffia serpentina Benth.) //山итология у генетиха. - 1994. - 28. 수 4. - С. 35-38.
15. Murashese T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissuc cultures // Physiol. Plant. - 1962. - 5. No 13. - P. 473-497.
16. Zarr A. J., Peerless A. C. J., Hamill I. D. et al. Alkaloid production by transformed root cultures of Catharanthus roseus // Plant Cell Rep. - 1988. - 7. No S. - P. 309-312.
17. Kasteryuk I. A. Lubaretz O. F.. Endre S.et al. Somatic hybridization in the Family Apocynecese (Catharanthus. Rauwolfia. Rhazya, and Vinca Species) // Biotechnology in Agriculture and Forestry / Ed. J P. S. Bajij. Vol. 27. Somatic Hybridization in Crop Improvement I. - Berlin: Springer - Verlag. 1994. - P. 405-424.
18. Schumacher H.-M.. Gundlach H., Fiedler F.. Zenk M. H. Elicitation of benzophenanthridinc alkaloid synthesis in Eschscholtzia cell cultures // Plant Cell Repts. - 1987. - 6. P. 410-413.
19. Malamy J., Carr J. P.. Klessig D. F.. Raskin I. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection // Science. - 1990. - 250. - P. 1002-1004.
20. Лахии Г. Ф. Бнометрия. - М.: Высш. шко.1а, 1980. - 293 c .
21. Rooks noed homes too...// Bioeng. news. - 1991. - 12, No 42. - P. 5.
22. Fioves H., Hoy M.. Pickard J. Secondary metabolites from root cultures // Trends Biotechnol. - 1987. - 5. No 3. - P. 64-69.
23. $К$ уаах B. \mathcal{A}. Генооная иэменчнвость и накопление индолиновых алкалоидов в ку.ьтуре клеток реуволифии эмеиной. Rauwa/fia serpentina Benth. // Бчополимісры и клетка. 1994. - 10. Ne 1. - C. 23-30.
[^0]Поступила 07.08.96

[^0]: Ин-т клеточной биологии и генет. инжснерии
 НАН Укракны, Кисв

