O Kannerne urtacer 1956
ю. в. Шелудько, И. М. Герасименко, И. А. Костенюк

СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ СУММЫ ИНДОЛЬНЫХ АЛКАЛОИДОВ

При проведении исследований в области клеточной бнологии растений-продуцентов возникает необходимость точного количественного определения продуктов вторичного синтеза, например, в растениях Catharanthus roseus и Rauwolfia serpentina (Apocynaceae), ввляюшихся источником ряда фармакологически активных индольных алкалоидов [1]
В конце $70-\mathrm{x}$ годов А. Г. Воллосович и соавторы $[2,3]$ прелложили простой метод колориметрического опредеток раувольфии змеиной на основанни свойства аймалина и структурно близких ему алкалоидов аиать пурпурное окрашивание в растворе концентрированнои азотной кислоты. Этот метод был использован в ряде раоот по клеточной селекции и мутагенезу для создания высокопродуктивных штаммов раувольфии змеиной [4, 5]. Мы также использовали этот подход в своих экспериментах с трансгенной корневой культурой раувольфии [6]. Вместе с тем, анализ результатов этих работ показал возможность расширения диапазона примеимости метода в биотехнологии растений-продуцентов.

Экспериментальная часть

Биологический матернал. В экспериментах использовали части интактного оранжерейного растения и трансгенную корневую культуру Rauwolfia serpentina, полученную нами рансе [6], которую культивировали на жидкой питательной среде MS [7] без гормонов при температуре $25^{\circ} \mathrm{C}$ в темноте на шейкере с частотой 100 колебаний/мин. Длительность пассажа составляла 14 суток. Биомассу отбирали в различные перноды культивирования, замораживали жидкнм азотом и лиофильно высушивали.
Экстракция. Суммарные экстракты алкалоидов получали методами Воллосовича и соавторов [3]
(опыт 1) и Парра с соавторами [8] в нажтей модификачии [9] (опыт 2)

Опыт 1. Лиофильно высушенную ткань трансгенной корневой культуры R serpentina измельчают до состояния одноровного порошка, увлажняют 10% раствором дммиака (0,8 мл на 100 мг сухого веса). Через $2-3$ мин добавляют хлороформ (20 мл на 100 мг сухого веса) и экстрагируют на шейкере в течение $5 ч$ при частоте 300 колебани $/$ мин. Экстракт фильтруют и высушивают над безводным сульфатом натрия; биомассу повторно упаривают на роторном нспарителе при температуре $35^{\circ} \mathrm{C}$ до об́ьема 20 мл и переносят во флакон упаривают на воздухе (под тхгой) до образования густого осадка и затем сушат лиофильно.
Опыт 2. Измельченную лиофильно высушенную ткань экстрагируют $0,5 \%$ водным раствором ортофосфорной хислотой с рН 2,0 (10 мл на 100 мг сухого веса) на шейкере в течение 5 ч (200 колебании/мин). Экстракт фильтруют, биомассу повторно экстрагируют 0,3 объемами $0,5 \%$ фосфорной кислоты. Контролируют значе38

ние pH и в стучае необходимости доволят до 2,0 , посл чего добавляют толуол (0,5 объема водного экстракта) Пробу интенснвно встряхивают $1-2$ мин и после отстанвания огбирают водную фазу с помощью делительной воронки (пориия 1). Эмульсию центрифугируют 5 мин при 8000 оо́оротов/мин, после чего отбирают водную фазу и соединяот с первой порцией. Доводят р водной фазы до 8,0 с помошью 25% водного раствора аммиака и трижды экстрагируют толуолом. Все порции органического экстракта объединяют и высушивают над тракт утаривают на роторном испарителе при темпера туре $40^{\circ} \mathrm{C}$ до объема 20 мл и переностт во флакон. Упа ривают на воздухе под тягой до образования густого осадка, затем досушивают лиофильно.
Количественное определение суммы алкалоидов Анализ проводят на фотозлектроколориметре ELMED $\mathrm{KF}-5$ (Польша) с зеленьм светофипьтром ($\lambda=520$ нм) Фотозлектроколориметр калибруют по стандартному раствору аймлина (Serva) и стандартному раствору ал калоидов суммарного хлороформного экстракта, полученного в опыте 1 (в дальнейшем: раствору суммарног лороформного эхстракта)
Качественное исследование суммарных экстрак тов алкалоидов. Качественный авализ суммы алкалои(TCX) на пластинах Merck UV 254 Silicagel, 0,25 мм $(10 \times 10,10 \times 5$ и $10 \times 4 \mathrm{~cm}$) (Германия) с последуюшим опрысхиванием хроматограмм реактивом - церий (IV)аммоний сульфатом (Fluka) (5% раствор в 85% фосфорной кислоте) или 68% взотноя кислотой. Систе мы растворителеи (объем/объем)

1) хлороформ - метанол - аммиак - $9: 1: 0,1$ [9];
2) хлороформ - гексан - диэтиламин - $6: 3: 1$ [9];
3) этиацетат - изопропанол - аммиак $-17: 2: 1$ [10]
) ацетон - хлороформ - вода - $16: 4: 1$ [11].
При построении графиков был использован перGRAPHER Copyright (C) 1986 Golden Software, Inc.

Результаты и $u х$ обсуждение

На рис. I представлен калибровочный график, понроенный по результатам измерений светопропускания растворов аймалина (Serva, Германия) различной концентрациии в HNO_{3}. В качестве контрольного раствора при проведении фотоколориметрических измерений ис пользовали дистиллированную воду [3]. Датьнейшее со ершенствование метода: лиофильное высушивание экс при растворении в азотнои кислоте, позволило избемат образования нерастворимых конгломератов и получит более высокий уровень содержания алкалоипов группы аималина в ткани культуры.
В табл. 1 приведены результаты исследования содер жания внутриклеточных алкалоидов группы индолина в различные периоды пассака. Сравнивая средние вели чины хониентраший алкалоидов груплы аймалина для

разных периодов культивирования с использовавием критерия Стьюлента и Х-критерия Ван-дер-Вардена [11], мы не нашли достоверного различия ($\mathbf{P}=0,95$) меж ту этнми величинами (рис. 2).
Необ́ходимо отметить, что даже различные варианты Нной и той же пробы зачастую имели ралличающиеся но несолько единиц значения с зетопропускания. Помирактах, колуенных ия индольных алкалоидов в экс готовленных из одного растительного материала разичого же исходного чаях в несколько раз (табл. 2). Такось в отдельных слунас остановиться на исслеповании пробдематисих мо ментов описываемого метола Во-первих истолиоа ие калибровочного графика, постренного со стаидар ному образцу аймалина, дает возможность более или менее объективно количественно оценивать лишь содержание аймалина и друпих, структурно близких ему индольных алкалоидов, даюших пурпурное окраптивание в азотной кислоте. В то же время для оценки общей суммы алкалоидов необходимо знать $/$ нли контролировать
 ходимо сушественно повысить воспроизводимость реультатов измерений одного и того же ооразца (экстракта). И, наконец, в-третьих, оценить влияние степени оистки экстракта на резупьтаты фотометрическнх измерений (экстракт в опьте 1 представляет собой суммарное извлеченне многих классов веществ из растительной ткани)

Зависимость концентрации внутриклеточных алкалондов группь индолина от периода пассамкя		
Howep orimm	пероод пасаха, сут.	c
1.1	5	488
1.2	5	700
1.3	5	875
1.4	5	775
1.5	5	475
1.6	5	788
1.7	5	275
$\mathrm{C}_{\mathrm{cp}}=625,0 \pm 160,3$		
2.1	12	713
2.2	12	675
2.3	12	1150
2.4	12	1100
2.5	12	554
2.6	12	394
$\mathrm{C}_{\mathrm{cp}}=797,6 \pm 246,9$		
3.1	15	1226
3.2	15	677
3.3	15	458
3.4	15	396
3.5	15	544
3.6	15	422
$\mathrm{C}_{\text {¢p }}=618,8 \pm 250,9$		
Примечания. С - Срелнее значение кониентраини алкалоидов группы аймалина (мг/ 100 г сухои тканн): $\mathrm{C}_{\text {ср }}$ - среднее арифметкческое. Для опрсделенны доверительното интераала использовали уровень вероттности $\mathrm{P}=0.95$. В графе "Номер опьта" первал иифра обозначест номер субклона: вторая - номер навески.		

Была построена кривая зависимости светопропуска ния раствора от концентрации суммарного хлороформ ного экстракта, полученного в опыте 1 (рис. 3).
иабл. 2 , и кривую, представленнуюкания, приведенные тали концентраиию педтавленную на рис. 3, мы рассчи те 1, в различные периоды пассажа (табл. 3). Сравнение средних значений этих величин с использованием критерия Стьюдента и X-критерия Ван-дер-Вардена выявило достоверное ($\mathrm{P}=0,95$) разиичие между кондентраиией в ткани исследуемых веществ на 5 -й и 12 -й дни культиви рования и их коншентрацией на 15 -п̆ день культивирования (рис. 4). Это свидетельствует о более точном соот рис. 3 , величинам светой кривой, представленной н ного экстргта Гравиметрическй ананиз сумиа
ученного методом Воллосояич (содержание в тхани экстоасируемых веществ на 12 м 14 сутки культивирования составляет $12,01 г$ на 100 г сухого веса ($12,1 \%$), в то время хак вес экстрахта, получен ного в оптте 2 , составляет 4,04 г на 100 r сухого веса ($4,04 \%$), т. е. в три раза меныше. Позтому использование калибровочной кривои зависимости светопропускания раствора от конщентраиии суммарного экстракта, полученного в опыте 2 , не позволяет получить объектнвные

Содерхание алкалоидов труппь аиталина в ткани трансгенной корневой культуры Raиwoffia serpentina для различных периодов пасскжа											
$\begin{gathered} \text { Ho- } \\ \text { ncp } \\ \text { onume } \end{gathered}$		T	P,\%	c_{1}	c_{2}	$\underset{\substack{\text { Ho- } \\ \text { ocpura }}}{\text { ocare }}$		T	P,\%	c_{1}	c_{2}
1.1	100	5	25	12,0	600	13,3	75	12	31	6,4	427
1.2	100	5	26	10,8	540	14,1	81	15	16	21,0	296
2.1	100	5	21	16,2	810	14,2	72	15	22	17,2	194
2.2	100	5	23	15,5	775	15,1	79	15	24	13,3	842
3.1	100	5	20	17,1	855	15,2	81	15	27	9,6	778
4.1	100	5	21	16,2	810	15,3	79	15	23	15,5	981
4.2	35	5	52	1,4	190	16,1	61	15	33	5,3	434
5.1	100	5	26	10,8	540	16,2	65	15	31	6,4	492
6.1	100	5	17	20,0 1	1000	16,3	60	15	29	7,8	650
6.2	82	5	29	7,8	476	16,4	33	15	47	2,8	424
7.1	100	5	29	7,8	390	17,1	55	15	35	4,7	427
7.2	62	5	42	2,6	210	17,2	54	15	36	4,4	407
8.1	100	12	20	17,1	855	17,3	55	15	32	5,8	527
8.2	100	12	24	13,3	665	18,1	60	15	27	9,6	800
9.1	100	12	20	17,1	855	18,2	61	15	31	6,4	25
9.2	63	12	34	5,0	397	18,3	51	15	34	5,0	490
10.1	52	12	38	3,5	337	18,4	21	15	67	0,6	43
11.1	100	12	16	21,0 1	1050	19,1	61	15	37	3.8	311
11.2	100	12	19	18,0	900	19,2	63	15	36	4,4	349
11.3	23	12	61	0,9	196	19,3	61	15	36	4,4	360
12.1	78	12	24	13,3	852	19,4	50	15	43	2,6	260
12.2	78	12	30	7.0	449	20,1	63	15	32	5,8	460
13.1	80	12	29	7,8	488	20,2	65	15	32	5,8	446
13.2	80	12	32	5,8	363	20,3	65	15	30	7,0	539

 сониентреиия алхалондов группы аЯмалина (шг/100 гсухого всса).

Рис. 1. График зависимости величинн светопропускания от
кониентрация аब̆малина в растворе. По оск абсиисс: трания растворя айметиа в вотной кнстоте мг 100 м 1 NO по оси ординат: величина светопропусканяя, \%.

данные о содержании индольных алкалоидов в ткан культуры
Для качественного сравнения суммарных экстрахтов, полученных соответственно в опытах 1 и 2 , мы приме нили метод TCX, используя пластины фирмы Merck, детектировали апкалонды, как описано в разделе Мате риалы и методы. Для одномернои ТСХ использовапи системы $1,2,3$ и 4 . Для системы 1 было обнаружено, соответственно, 17 и 18 соединении, для системы $2-14$ и 17, аля систем
соответственно

Для разделения двумерной TCX использовались сис темы 1 и 2. В резулвтате анализа хрокатограмм бнло оо наружено 23 соединения в суммарном хлорофориенном зкстракте, полученном согласно опиту 1 , и 36 соедине ний в экстракте, полученном в опыте 2. Семнамиать и ннх обладали сходными характеристиками (табл. 4).
Таким образом, экстракыня алкалоидов в опытте 2 по
 иия в опыте 1 Тем не менее в составе суммарного зкс тракта, полученного методом Воллосовича (оптт I) зарегистрирован ряд компонентов, отсутствующих в суммарном экстракте, полученном методом Парр (опыт 2), которые могут быть зафиксированы колори метрическим методом после обработки азотной кисло той, что подтверждается данными, приведеннымй нике. Суммарные зкстракты, полученные соответственно пытах 1 . 2, ралдлй дыусрии TCX, ках описано выше, в системах 1 и 2 . Регистрашия провопилась по поглощению флуоресценшии при $\lambda=254 \mathrm{~mm}$, а тасже по окрашиванию пятен после обработки хроматограмм водным раствором 85% азотной кислоты.
Анализ результатов позволил зарегистрировать 25 соединений на хроматограмме зкстракта, полученного в оолуе, и 28 соединений на хроматограмме зкстракіа
 ных компонентоя зкстактои (таб 5) ых компонентов экстрактов (табл. 5)

Рис. 2. Графнк зависимости концентрации алкалоидов группы иноолина в ткани трансгенной корневой кудттури Rauwolfia
 ма в ткани культуры, г/100 г сухого веса Дли расчета использозали графих, представпенный на рис. 1.

Как видно нз табл. 5, на хроматограмме суммарного кстракта, полученного в опыте 1, присутствуют три окрашенных азотной кислотой в коричневый цвет пятна имеющих малую подвкжность в использованных системах растворятелен. Анапогичные компоненты отсут-

Таблица 3
Зависимость кондентраиин внутрислеточных алкалондов группи индолина от периода пассажа

Ноисф оиита	пермод писсала, сут	c
1.1	5	10250
1.2	5	11000
1.3	5	11500
1.4	5	12054
1.5	5	10000
1.6	5	11677
1.7	5	9087
$\mathrm{C}_{\text {cp }}=10776 \pm 794$		
2.1	12	10825
2.2	12	11583
2.3	12	12308
2.4	12	13290
2.5	12	12051
2.6	12	10792
$\mathrm{C}_{\text {cp }}=11808 \pm 764$		
3.1	15	15131
3.2	15	12799
3.3	15	14026
3.4	15	13350
3.5	15	14695
3.5	15	11289
3.6	15	12615

Іримечммия. C - Среннее значение мониентрриин апхалоидов груп

 то зкстрагтя, полученного \& опите

Рис. 3. График зависимости величины светопропускания раствора от концентрации апхаломдов суммарного хлороформ траиия раствора суммарного экстракта в азотнои кислоте мг/ 100 мл HNO_{3}; по оси ординат: величина светопропус кания,

ствуют на хроматограмме экстракта, полученного опыте 2. Приведенные данные свидетельствуют о каче ственном отличии спектра синтезируемьх натей куль турой алкалоидов, окрашивающихся азотной кислотои от соответствуюшего спектра алкалоидов клеточно культуры Raıwolfia serpentina, описанного А. Г. Волло

Рис. 4. График зависимости концеятрации алкалоидов группы ндолина в тхани трннсгенной корневой култтур Rаишо/fia serpentina от периода пассажа По оси абсцисс: период пассажа
(сут.); по оси ординат: кониентрация алкалоидов группы индоянна в тхани культуры (г/100 г сухого веса). Дия расчета использовали график, представленный на рис.

Соичем [2]. В приведенных им данных [2], кроме аймакна, на хроматограмме экстракта ткани культуры после работки азотнои кислотоя было зарегистрирован
 казывали сушественного влияния на оптическую ппотность раствора
Таким образом, можно прешоложить, что окрашивающиеся азотной кислотой в коричневый цвет примеси в суммарном экстракте трансгенной корневой культуры

Таблииа 4 Резуль

N	цас	d1/d2	UVI	uv2	$\mathrm{R}_{\mathrm{f}} 1$	$\mathrm{R}_{\mathrm{f}} 2$	N	цис	didd	uvi	uv2	Rf^{1}	$\mathrm{Rf}_{\mathrm{f}}{ }^{2}$
6	-	$2 / 2$	+ ${ }^{1)}$	-	0,22	0,06	2	0	$2 / 2$	-	-	0,17	0,06
7	-	3/3	+	-	0,33	0,09	8	-	5/3	+	-	0,30	0,03
8	-	4/4	+	г	0,34	0,13	10	-	$5 / 5$	_2)	r	0,29	0,14
9	k	5/5	+	-	0,40	0,23	13	k	$6 / 6$	+	-	0,36	0,23
10	-	4/2	+	r	0,42	0,08	17	-	4/1	-	r	0,38	0,08
11	-	$4 / 2$	+	r	0,48	0,11	19	-	$4 / 3$	-	r	0,46	0,11
12	-	$9 / 7$	+	cor	0,52	0,20	20	-	12/11	+	c-r	0.51	0,22
13	-	$6 / 5$	+	r	0,63	0,35	21	-	$6 / 6$	+	r	0,62	0,33
19	-	$4 / 4$	+	c-r	0,48	0,40	25	-	$6 / 5$	+	r	0,45	0,39
23	p	3/3	-	-	0,47	0,49	27	p	3/3	-	-	0,42	0,48
20	-	$2 / 4$	+	c-3	0,48	0,44	28	-	4/4	+	*-3	0,45	0,45
21	-	$2 / 4$	+	-	0,48	0,47	29	-	5/5	+	*-3	0,43	0,51
22	-	$4 / 4$	+	c-r	0,48	0,52	30	p	$3 / 4$	-	-	0,61	0,53
18	p ${ }^{3}$	3/5	+	-	0,64	0,54	31	$-$	$4 / 7$	+	-	0,62	0,52
16	* 4	$4 / 4$	+	*	0,67	0,51	32	${ }^{4}$	716	-	*	0,66	0,50
14	-	4/3	+	r	0,74	0,51	33	-	4/4	+		0.74	0,49
15	-	4/4	+	r	0,75	0,62	34	-	4/4	-	r	0,74	0,60

Раимери розового пттна $2 / 25$
${ }^{4)}$ Рамерры пятен, окрашснных ЦАС, в обоих случахх не соппадиот с рамерамн фпуорссиируюших пттен

Опит 1					Опит 2				
N	HNO_{3}	uv1	${ }_{\text {R }}$	$\mathrm{Rf}_{\mathrm{f}} 2$	N	HNO_{3}	uv	$R_{\text {f }} 1$	$\mathrm{R}_{\mathrm{f}} 2$
1	кор.		0,04	0,00	9		+	0,35	
4	кор.	+	0.13	0,02	14		+	0,30	0,15
5	кор.		0.15	0,02	15		-*	0,35	0,26
10	к	-	0.38	0,22	16		+	0,35	0,25
11	-	+	, 38	0,21	23	\cdots		0,41	
17	\cdots		0,46	0,44	26	m	-	0,61	0,53
22	M	-*	0,61	0,50	27	-	+	0,62	
23	-	+	0,62	0,48	28	*	+	0,66	
24	*	+	0,65	0,49					
Пркмечаиия. HNO_{3} - Окрвшивание мопюои кислотоа; UVI - детекция гашения флуоресценции флуорохрома пластннн в ультрафиолете ($\lambda=254$ нм); $R_{\mathrm{f}} \mathrm{I}$ - значенис R_{f} в скстеме $1: R_{\mathrm{f}} 2$ - значение R_{f} в системе 2; ж - желтын; к - храснын; м - малиноани; кор. коричневый. Цемтры пхтен 10 и 11,15 н 16,22 к 23,26 и 27 при обнаружении с помошью HNO_{3} н детектиропании гашеняя флуоресисниии ирн $\lambda=254 \mathrm{~nm}$, соответственно, не совпадаиот.									

Rauwolfia serpentina могут фитсироваться при фотоко лориметрических измерениях и искахать величяну све топропускания раствором сумкарного экстракта по сравнению с величиной светопропускания раствора чис того аймалина. Проведение измерений с использовани м дистиллированной воды в ковете сравнения, а в раствора апкалоидов, прореагировавшего в азотной ки лоте до нсчезвовения пурпурнои окраски, увеличивае огрешнось определения. Кроме того, изменение соот вающихся азотной кислотон авканочдов и неокрашнзстракте может сушестяенио стазыватва иа резулт тах колориметрических измерении.
Анализ приведенных выше результатов исследований литературных данных позволяет сделать следуюпие мыводы.
Величина светопоглощения (зеленый светофильтр, $\lambda=520 \mathrm{Hм}$) раствора суммарного экстракта алкалоидов,

олученного в олыте 1 , отличается от величины светопоглощения раствора аймалина в азотной кислоте, что может приводить к значительным (более 50%) погрешной кривой, построенной по очнщенному образцу аймалина.
Суммарныи хлороформный экстракт, полученный в пыте 1 , содержит примеси, отсутствуюшие в суммарном экстракте алкалоидов, полученном в опыте 2 , что Анализ результатов ТСХ демонстирует 6
й спектр соепинений оияияених куестолее широакциями индольных алкалоидов суммарного экстракта, поученного в опыте 2 , по сравнению с экстрактом, полученным в опыте 1
Анализ хроматограмм, обработанных азотной кнслотой, показывает наличие хромогенных компонентов в составе экстракта, полученного в опыте 1 , но отсутствующих в экстракте, полученном в опыте 2
ЛИТЕРАТУРА

1. R Verpoorte, R. Heigen, W.van der Gulik, et al., The Alkaloid

Chemistry and Pharmacology, Vol. 40, Ed. Y. P. S. Bajai, San
Diego, Acad Press. Inc. (1991), p. 187.
2. А. Воллосович, Л. А. Нихолаввя Н. К. Поэняков и др.
Раст. ресры, 13(1), 127-132 (1977). Раст ресурсы, 13(1), 127 - 132 (1977).
ресурск, 17(4), $585-586$ (1981). С. Н. Гутман и др., Раст
4. Н. Е. Воллосовяч, А. Г. Воллосович, Т. А. Ковалева и др

Pacmum ресурсв, $12(4), 578$ - 583 (1976).
B. А. Кунах, Биооониеры и
5. В. А. Кувах, Биоповииеры и скетка, 10(1), 3-30(1994).

28(4), 35-38(1994).
7. T. Murashige and F. Skoog, Physiologia Planterum, 5 (13) 473-497 (1962).
8. A. J. Parr, A. C. J. Peertess, J. D. Hamill, et al., Plant Cell Rep. 9. I. A. Kostenyuk (1988).
O. A. Kostenyuk O. F. Lubaretz, S. Endre, et al., In: Biotechnol omatic Hybricuture in Corestry, Ed. J. P. S. Bajaj, Vol. 27, Berrin (1994), pp. $405-424$. A 1. Г. Ф. Лахия, Биаме 289-307(1984) c. 293 .

Методы синтеза и технология производства
лекарственных средств

newrue arcosoen 19

Е. В. Компанцөөа, М. В. Гаврилин, Л. С. Ушакоөа

ПРОИЗВОДНЫЕ β-ЦИКЛОДЕКСТРИНА И ПЕРСПЕКТИЗЬ

- В ФАР МИИИ (ОБЗОР)

Разработка и производство новых готовых лекар свенных средств всегда предполагает использовани различных вспомогательных веществ. Их роль заключа ществу (лв) в том, чтобы придать лекарственному веществу (Лв) удобную для применения форму. Част скую доступность ЛВ являсь ого оодлить оиологиченосителей такого лода мвлясь его носителем. Примером орбенты или шиттодестриин (LIDD
рбеныы нли цаклодекстрины (LД)
остоящие из 6-8 молекул глюкозч, соединесахариды, ду собой $1-4 \alpha$-гликозидными связями. При этом внутри молекулы ЦД образуется полость в виде ханала диаметром 70 - 90 нм. Такая структура молекулы позволяет LU бразовывать с различными соединениями комплексы ключения (КВ) по типу "хозяин-гоств". Основньм условнем образования этих комплексов является со тветствие размеров молекул "тостеи" полостям "хов наст.
В настояшее время ЦД достаточно хорошо изучены и используются в фармацевтической практике для повыкуса улучшения ра, устанемиа неприятного запаха, упности ЛВ $[2,3]$. Из приротнгх ЦД персаен дос начение приобрел лиши β-шитодемт (ILID (I) ииту своей доступностн, α - и γ-LД в настоинес (I) в чень дороги. Вместе с тем слепует в настоящее время ое применение БЧД ограничивается его ни, по расто римостью в воде: $1,85 \mathrm{r} / 100$ мл при $20^{\circ} \mathrm{C}[1,4]$.
С середины 80 -х годов были начаты пирокомасшттабСе иследования по получению различных произволных \mathcal{L} И характеризующихся высокой растворимостью отсутствием нефротоксичности, наблюдаемой при парэнтеральном введении I [5].
В настоящее время известны алкильные, гидроксиалкильные, ацильные, карбоксильные н аминопроизводные БЦД [6], которые разпичаются своей раствомрованные (2 гидроксиалкитьные (2 гилрокси, 2,, 6 -триметил-вЦи), роксипропил-БLІ; 2-гияроксиэтил-БІन: 2, 2, сизтил-БЦД) а такке разветвленные мальтозил-БLД и глюкозил-БЦД Все они характериз ются хорошей растворимостью в воде, а по своей сомобилизируюшей активности намного превышают БЦД

Гидрофоб́ные производныге представлены лиэтиль ными и триэтильными производнымм БЦД. Они характеризуются низкой растворимостью в воде и могут быть использованы для пролонгирования деиствия ЛВ.
Третью группу составляют ионизированные производиые БLД - карбоксильные и аминопроизводные. Их

растворимость и солюбилизируюшая активность нахо дятся в сильной зависимости от рН среды $[7,8$].
Следует отметить, что вследствие доступности БL (низкие чены, простота производства), производные других ЦД не получили щирокого распространения, а из производных БЦД наиболее перспективными оказались алкнльные и гидроксиалкильные

Методы исследовання взаимодействия ЛВ с пропзводными БЦД

Среди различных методов иэучення взаимодействи д с ЛВ наибольнее распространение имеет метод "фа девой растворимости" [9]. Это свззано с тем, что взанмо нию растворимости ЛВ как всегда приводит к мышению Для изучения взаимодействия этим методом исследует ся растворимость лВ в растворах различной концентра ции. По полученным хривым рассчитывается констант образования комалехса. Этим методом было изучено БЦД (II) с различиями стерокдннми противовоспалитепьи оори сренами [10], не-
С целью установления фахта образояния поио [1]. в растворах используются методы спектрополяримет рии, электронной и ЯМР-спектроскопии [10, 12] Дл исследования взаимодействия 2 -гидроксипропил-БШ (III) с афлатоксинами в растворах был использован ме тод флуориметрин [13]. В [14] описано использование для этих целей обращенно-фазной TCX. Пластинку предварительно импрегнируют жидким парафином, затем исследуют подвижность ЛВ, используя в качеств докой фазы водно-этанольные растворы III
пользуется ИК-спектросопия состоянии широко ис скопия [16] дифференшиатия [15], ${ }^{13} \mathrm{C}$ ЯМР-спектро метрия, ренттеноструктурныи анализ [17, 18] при эори был выявлен ряд обших закономерностей. Устано этоно что образование комплексов сопровождается возникно вением водородных связей между протонами гидроксилов ЦД и карбонильным кислородом ЛВ (индометаиин ольтарен, стероиды). КВ с I имеют канальную структуру, образованную двумя молекулами LД. Для КВ ІІІ характерно только аморфное состояние, а для КВ I и II меньшение кристалиичности [17, 19].
Нзмсненне бнологической доступности ЛВ при комвается при омо сия "рыми БцД легко оцениЭтим методом установлио врамаюмаяся корзинка". доступности фуросемида гишроиортиззна мебесизо а метронидазола и кавинтона при взаимодействии сI [20-22].

